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I. Abstract

In earlier investigations, the adaptation and implementation of a modified two-level corrections process as
the onboard targeting algorithm for the Trans-Earth Injection phase of Orion is presented. The objective of
that targeting algorithm is to generate the times of ignition and magnitudes of the required maneuvers such
that the desired state at entry interface is achieved. In an actual onboard flight software implementation,
these times of ignition and maneuvers are relayed onto Flight Control for command and execution. Although
this process works well when the burn durations or burn arcs are small, this might not be the case during a
contingency situation when lower thrust engines are employed to perform the maneuvers. Therefore, a new
version of the modified two-level corrections process is formulated to handle the case of finite burn arcs. This
paper presents the development and formulation of that finite burn modified two-level corrections process
which can again be used as an onboard targeting algorithm for the Trans-Earth Injection phase of Orion.
Additionally, performance results and a comparison between the two methods are presented. The finite burn
two-level corrector formulation presented here ensures the entry constraints at entry interface are still met
without violating the available fuel budget, while still accounting for much longer burn times in its design.

II. Introduction

U
NDER nominal operational conditions, the Crew Module’s (CM) 33,361 N main engine performs the 3-
burn Trans-Earth Injection (TEI) sequence. However, the spacecraft must also have the ability to target

and execute the maneuvers to return the crew safely to Earth using the backup auxiliary engines. Since the
total thrust of these eight (8) auxiliary engines is 4,400 N, the burn durations are naturally much longer.
By way of comparison, that yields a burn duration of 5.5 minutes for the baseline TEI-1 maneuver with the
main engine, and 55 minutes to perform the same maneuver with the auxiliary engines.

In the next section of this paper, the formulation of the finite burn algorithm is presented. Next, the
performance results and a comparison between the two methods is discussed. For all the runs considered,
the same initial conditions and same entry targets are used. An optimal trajectory will be generated for
each case to facilitate a comparison with the targeting algorithm results.

III. Finite Burn Targeting Algorithm

A. Level I Process

The Level I process is a differential correction scheme that seeks to identify the transfer arc between two
position vectors by adjusting the departure velocity. Consider a segment of the trajectory whose endpoints
(patch points) are denoted by k — 1 and k, as shown in Figure 1. In a Level I process that employs finite
burns rather than impulsive maneuvers, the burn arc is considered to be a subsegment of the arc between
patch points k — 1 and k. The end of the burn occurs at point T. In identifying finite burn arcs, it is

T

necessary to consider an augmented state vector [ Rk Vk mk rrcgk ¯uk ] ,where mk , ṁgk, and ūk
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Figure 1. Level 1 Process

represent the spacecraft mass, the propellant flow rate, and the thrust direction associated with patch point
k, respectively. The goal is to identify a relation between the target, which is the terminal position vector at
point k (R̄k ), and the control variables. The control variables are the thrust direction ( ūk-1 = ūk ) and the
time at the end of the burn (t T ). As in the impulsive formulation, the state transition matrix is partitioned
into sub-matrices corresponding to each state. The variational equations for each subsegment are then

δR̄T —


V̄-T δtT


δVT
- — ā-T δtT 

δmT + m-gT
 δtT

= δ
ṁ-

gT — m̈-gT
 δtT



δū-T — ˙̄u-T δtT 	



(1)
AT,k-1


BT,k -1 ET,k-1 FT,k-1 GT,k-1


δR̄k-1


— V¯ +

k-1δtk-1


 CT,k-1 DT,k-1 HT,k-1 IT,k-1 JT,k-1 δV± 1 — ¯a+k-1δtk-1	 


KT k-1 LT k-1 MT k-1 NT k-1 OT,k-1 δm+
k- 1 + ṁ+ 

gk_1
δtk-1

PT,k -1 QT,k -1 RT,k-1 ST,k -1


TT,k -1

 δṁ+gk_1 — ¨m+
gk_1

δtk


-1	



UT,k-1 VT,k -1 WT,k-1 XT,k-1 YT,k-1 



δū+
k- 1



— ˙̄u+
k-1δtk-1	



for the burn subsegment, and

r δRk — Vk δtk 1 — r Ak,T Bk,T 1 r δRT — V+
T  δtT 1	 (2)

L δVk
- — āk δtk J L Ck,T Dk,T J L δV+

T  — a+
T δtT J

for the subsequent coasting subsegment.
For this formulation, both the initial and final times of the arc (tk-1 and tk ) are fixed, as are the initial

position ¯Rk-1, velocity ¯Vk-1, and mass mk-1. The mass flow rate, ṁgk_1, is also fixed. It is important to
note that V̄+T  = V̄-T  (and therefore δV̄+T  = δV̄-T  ), and that δV̄+T  — ā+

T δtT = δV̄-T — ā-T δtT + (ā-T — ā+
T )δtT .

Incorporating these substitutions, the first two variational equations from Equation (1) and Equation (2)
can be combined to give an expression for δR̄k ;

δR̄k = Ak,TGT,k-1δū+
k- 1 + Bk,T (JT,k-1δū+

k- 1 + (ā-T — ā+
T )δtT ).	 (3)
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Rearranging this equation into matrix form gives

δRk = (Ak,T GT,k_1 + Bk,TJT,k_1) Bk,T (āT — ¯aT	
δu±
	4

+) ^	 δcT 
1 .( )

As in the impulsive Level I method,1 the minimum norm solution is used to obtain the desired change in
the control variables such that	 "	 #

δū+k_1 = M̃T (M˜M̃T)_1δR̄k ,	 (5)δcT

where	
M̃ = h (Ak,TGT,k_1 + Bk,TJT,k_1) Bk,T (āT — ā+

T ) ] .	 (6)

For the first iteration, an initial guess for the duration of the burn is obtained by doing one iteration of an
impulsive-maneuver Level I correction and plugging the resulting ΔV value into the rocket equation. The
initial guess for the direction of the burn is taken directly from the ΔV vector.

B. Level II Process

The Level II formulation for finite burn maneuvers is not conceptually dissimilar from the impulsive maneuver
scheme.1 In both cases, the only control variables employed are the positions and times of the patch states.
As in the impulsive formulation, a minimum norm solution is used to compute the patch point updates.
However, because the dynamical model for the finite burn algorithm is augmented, the partial derivatives
are more complex than those in the impulsive maneuver algorithm. The burn is assumed to start with the
same initial velocity as the terminal velocity of the preceding arc. Thus, the velocity discontinuity occurs
at patch point k, the end of the coasting subsegment of the full arc (assuming this arc is then followed by
another coast arc). Although this problem at first seems identical to the impulsive maneuver targeting, since
the velocity discontinuity falls between two coast arcs, the partial derivatives for δV̄_k  with respect to δR̄k_1 ,
ck_1, δR̄k , and ck differ due to the thrust segment at the beginning of the arc.

Extracting δV̄_k  from Equation (2) in the Level 1 formulation section gives

	

δV̄_k  = Ck , T (δR̄T — V̄+T  δcT ) + Dk,T (δV̄+
T  — ā+

T δcT) + ā_k δck .	 (7)

Recall from the Level I formulation that V̄_T  = V̄+T  at the terminal point of the burn arc and thus that
δV̄+T  — ā+

TδcT = δV̄_T  — ā_T δcT + (ā_T — ā+
T )δcT . Substituting these expressions into Equation (7) yields

δV̄_k = Ck,T(δR̄T — V̄_T δcT ) + Dk,T [(δV̄_T — ā_T δcT) + (ā_T — ā+
T )δcT] + ā_k δck .	 (8)

The first two variational equations embedded within Equation (1) are then summarized as

(δR̄T — V̄_T δcT) = AT,k_1 (δR̄k_1 — V̄+
k_1δck_1) + BT,k_1 (δV̄+

k_1 — ā+
k_ 1δck_1)

+ ET,k_1 (δm+
k_ 1 + ṁ+

gk_1δck_1) + FT,k_1 (δṁ+
gk_1 — m̈+

gk_1δck_1)	 (9a)

+GT,k_1(δū+
k_1 — ˙̄u+

k_1δck_1),

(δV̄_T — ā_T δcT) = CT,k_1 (δR̄k_1 — V̄+
k_1δck_1) + DT,k_1 (δV̄+

k_1 — ¯a+k_ 1δck_1)

+ HT,k_1 (δm+
k_ 1 + ṁ+

gk_1δck_1) + IT,k_1 (δṁ+gk_1 —m̈+gk_1δck_1)	 (9b)

+ JT,k_1 (δū+
k_1 — ˙̄u+

k_1δck_1 ).

For the Level II process, δm+
k_1 = m̈+

gk _1 
= 0 and ˙̄u+

k_1 = 0̄. It is still assumed that ṁg is a fixed constant,
i.e. δṁ+

gk_1 = 0. Neglecting these zero terms, and substituting the expressions in Equation (9) into Equation
(8), an expression is found for δV̄_k  in terms of the state at patch point k —1 and the state transition matrix,

δV̄_k  = Ck,T[AT,k_1 (δR̄k_1 — V¯ +
k_1δck_1)

+ BT,k_1 (δV̄+
k_1 — ā+

k_1δck_1) + ET,k_1ṁ+
gk_1 δck_1 + GT,k_1δū+

k_1]

¯
	 (10)

+DkT [CT,k_1 (δRk_1 —V±1δck_1)+DTk_1 (δV±1 —ak_ 1δck_1)

+ HT,k_1ṁ+
gk_1 δck_1 + JT,k_1δū+

k_ 1 + (ā_T — ā+
T )δcT] + ā_k δck .
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In order to write SV̄-k  only in terms of the Level II control variables, the first vector equation from Equation
(1) is used to solve for SV¯+k-1, Sū+

k- 1 , and StT . Substituting for V̄+T  and SV̄+T  — [̄L+
TStT as shown previously,

this equation is

SR̄k — V̄-k  Stk = Ak,T(SR̄T — V̄-T StT ) + Bk,T ^(SV̄-T — [̄L-TStT ) + ([̄L-T — ¯[L+
T )StT].	 (11)

Dropping the terms that are equal to zero and substituting the same expressions from Equation (9) that
were used to form Equation (10), this first vector equation becomes

SR̄k — V̄-k Stk = Ak,T ^AT,k-1 (SR̄k-1 — V̄+
k-1Stk-1) + BT,k-1 (SV̄+

k-1 — [̄L+
k- 1Stk-1 )

+ET,k-1ṁ+
gk-1

Stk-1 +GT,k-1Sū+
k-1]

+ Bk,T ^CT,k-1 (SR̄k-1 — V¯ +
k-1 Stk-1 )

+ DT,k-1 (SV̄+
k-1 — [̄L+

k- 1Stk-1) + HT,k-1ṁ+
gk-1

Stk-1

+ JT,k-1Sū+
k- 1 + ([̄L-T — ¯[L+

T )StT].

Further rearranging Equation (12) into vector form to isolate SV¯+k-1, Sū+
k- 1 , and StT yields

SR̄k — V̄-k Stk — (Ak,TAT,k-1 + Bk,TCT,k-1 )(SR̄k-1 — V¯ +
k-1Stk-1)+

(Ak,T BT,k-1 +Bk,TDT,k-1)[̄L
+
k- 1Stk-1 — (Ak,TET,k-1 +Bk,THT,k-1 )ṁ+

gk-1
Stk-1

 	 

1 SV±1

= [ (Ak,TBT,k-1 + Bk,TDT,k-1) (Ak,TGT,k-1 + Bk,TJT,k-1) Bk,T([LT — [L+T ) 
J

 Sū+ .k- 1

StT

The minimum norm solution is used to solve Equation (13) for
T

[ SV± 1 Sū+
k- 1 StT ] in terms of the Level 2 control variables such that

 	 
SV¯+k-1 ¯

	
¯Suk 1 = ZT (ZZT ) -1 ^SRk — Vk-Stk

StT

— (Ak,TAT,k-1 + Bk,TCT,k-1 ) (SR̄k-1 — V¯ +
k-1Stk-1 )

+ (Ak,TBT,k-1 +Bk,TDT,k-1 )¯[L+k-1Stk-1

— (Ak,TET,k-1 + Bk,THT,k-1 )ṁ+
gk-1

Stk-1].

Here, Z = [ (Ak,TBT,k-1 + Bk,TDT,k-1) (Ak,T GT,k-1 + Bk,TJT,k-1) Bk,T ([LT — [L+
T ) ] . Going back to

T
Equation (10), this expression is rewritten in terms of the Level2 controls and the vector [ SV± 1 Sū+

k- 1 StT ]
as follows

SV̄-k = [̄L-
k Stk + (Ck,TAT,k-1 + Dk,TCT,k-1 ) (SR̄k-1 — V¯ +

k-1Stk-1 )

— (Ck,TBT,k-1 +Dk,TDT,k-1)[̄L+
k- 1Stk-1 + (Ck,TET,k-1 +Dk,THT,k-1 )ṁ+

gk-1
Stk-1

 	 

	

SV+ 
1
	 (15)

+ [ (Ck,TBT,k-1 + Dk,TDT,k-1) (Ck,T GT,k-1 + Dk,TJT,k-1) Dk,T ([LT — ¯[L+
T) ] Sū+ .k- 1

StT

T
Substituting the expression for [ Sy± 1 Sū+

k- 1 StT ] into Equation (15) gives

SV̄-k = [̄L-k Stk + (Ck,TAT,k-1 + Dk,TCT,k-1 ) (SR̄k-1 — V¯ +
k-1Stk-1 )

— (
rr

Ck,TBT,k-1 +Dk,TDT,k-1)[L+
k- 1 Stk-1 + (Ck,TET,k-1 +Dk,THT,k-1 )m+

gk-1
Stk-1

+ L (Ck,TBT,k-1 +Dk,TDT,k-1) (Ck,T GT,k-1 +Dk,TJT,k-1) Dk,T([LT —[L+
T ) ]	 (16)

* ZT (ZZT ) -1 ^SR̄k — V̄-k Stk — (Ak,TAT,k-1 + Bk,TCT,k-1 ) (SR̄k-1 — V¯ +
k-1Stk-1 )

+ (Ak,T BT,k-1 + Bk,TDT,k-1 ) [̄L+
k- 1Stk-1 — (Ak,TET,k-1 + Bk,THT,k-1 )ṁ+

gk-1
Stk-1].

(12)

(13)

(14)
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Let

Z = h (Ck,TBT,k-1 + Dk,TDT,k-1) (Ck,T GT,k-1 + Dk,TJT,k-1) Dk,T(aT — a
+
T ) ] ZT (ZZT) -1. (17)

Then, rearranging Equation (16) to isolate the control variables yields

lSV̄-k  = 
//
(Ck,TAT,k-1 + Dk,TCT,k-1 ) — Z(Ak,TAT,k-1 + Bk,TCT,k-1 )]lSRk-1

+ l [(Ck,TET,k-1 + Dk,THT,k-1 ) — Z̃(Ak,TET,k-1 + Bk,THT,k-1 )] ṁ+
gk —1

— [(Ck,TBT,k-1 + Dk,TDT,k-1 ) — Z̃(Ak,TBT,k-1 + Bk TDT k-1 )] ak 1	 (18)

— [(Ck,TAT,k-1 + Dk,T CT,k- 1 ) — Z̃(Ak,TAT,k-1 + Bk,TCT,k-1 )]V¯ +
k-1 )lStk-1

+ Z̃lSR̄k + (ā-k — Z˜V¯-k )lStk .

Thus, the partials of lSV̄-k  are

∂lSV¯-k = /Ck,TAT,k-1 +Dk,TCT,k-1 ) — Z(Ak,TAT,k-1 +Bk,TCT,k-1),
∂lSR̄k-1

 \\

∂lSV¯-
∂ lStk

k 
1 

= [(Ck,TET,k-1 + Dk,THT,k-1 ) — Z(Ak,TET,k-1 + Bk THT k-1 )] mgk
 
—1

— [(Ck,TBT,k -1 + Dk,TDT,k-1 ) — Z̃(Ak,TBT,k-1 + Bk,TDT,k-1)]ā
+
k-1	 (19)

— [(Ck,TAT,k-1 +Dk,TCT,k-1 ) — Z̃(Ak,TAT,k-1 +Bk,TCT,k-1 )]V¯ +
k-1 ,

∂lSV̄-k  = Z
∂lSR̄k	,
∂lSV̄-k = (ā-k  —Z˜V¯-k  )∂lStk

Because it is assumed that the arc from patch points k to k + 1 is a coast arc, the partial derivatives of lSV¯ +
k

are the same as for the impulsive case. The partial derivatives of ΔV̄k are therefore

∂Δ ¯Vk
= —(Ck,TAT,k-1 +Dk,TCT,k-1 ) — Z(Ak,TAT,k-1 +Bk,TCT,k-1),

∂R̄k-1

∂Δ ¯Vk = //
∂tk-1 —l [lCk,TET,k-1 +Dk,THT,k-1 ) — Z

/

(Ak,TET,k-1 +BkTHTk-1 )] mgk
 
—1

— [(Ck,TBT,k-1 +Dk,TDT,k-1 ) — ZlAk,TBT,k-1 +Bk,TDT,k-1)]ā+
k-1

— [(Ck,TAT,k-1 + Dk,TCT,k-1 ) — Z̃(Ak,TAT,k-1 + Bk,TCT,k-1 )]V¯ +
k-1),

∂̂ R
kk
 = —Bk+1 kAk+1,k — Z,	 (20)

∂ΔV̄k _ -1
∂tk — Bk+1,kAk+1,kV+ + a+

k  — (ak —ZV-k ),

∂Δ ¯Vk	 -1
∂R̄k+1 = Bk+1,k,

∂Δ ¯Vk = -1
∂tk+1 

—Bk+1 kVk+1 .

The desired changes to the control variables are found using the minimum norm solution,
 	 

lSR̄k-1 	  lStk-1 
lSRk

 	  	 = MT (MMT)-1ΔV̄k ,	 (21)
 lStk  	 



lSR̄k+1 
lStk+1

where M = L 8^Vk 8^Vk 8^Vk 8^Vk 8^Vk 8^Vk 1 .

	

L 8Rk—1 8tk—1	 8Rk	8tk	8Rk}1 8tk}1 J
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C. Maneuver Sum Constraint

In addition to the velocity continuity constraint, several trajectory constraints are imposed in the Level II
process. 2 One such constraint is on the total ΔV sum of the maneuvers. The finite burn formulation of this
constraint is based on the impulsive maneuver sum constraint, 3 and in fact uses the exact same approach to
place the relevant partial derivatives into the M matrix. Only the composition of those partial derivatives
and the error calculation process change.

Denote the patch point where the burn occurs as patch point k, rather than k — 1 as in the previous
sections. This is so that the Level II control variables for this constraint are still R̄k_1, ck_1, R̄k , ck , R̄k+1 ,
and ck+1, as is the convention for this process. To derive the burn maneuver constraint, it is necessary to
determine the partial derivatives of the magnitude of ΔV̄k , the ΔV resulting from the burn maneuver at
patch point k, with respect to the Level II control variables. From the rocket equation, ΔVk is given by

ΔVk = —I3p 90 ln(1 — m9k
Δcburn),
	 (22)mk

where Δcburn = cT — ck . The partial derivative of ΔVk with respect to the burn duration at patch point k
is given by

∂ΔVk
= 3p90

9k

∂Δcburn I	
(
mk — ṁ9k

Δcburn) ( mk
 ).(23)

Next, the partial derivatives of Δcburn with respect to the control variables are necessary. From the definition
of Δcburn, it is evident that an expression for δcT in terms of the control variables is required. This is
determined using the variational equations from points k — 1 to k, k to T (the termination of the burn
segment), and k + 1 to T;

r δRk — Vk δck 1 — r Ak,k_1 Bk,k_1 1	 r δRk_1 — V± 1δck_1 1	
(24)

L δVk — [Lk δck J L Ck,k_1 Dk,k_1 J	 L δV± 1 — [L+k_ 1δck_1 J

δR̄T —


V̄_T δcT
 	 

AT,k BT , k ET , k FT , k GT , k δR̄k —
 

V¯ +
k δck



δVT_ — [LT δcT CT,k DT,k HT,k kIT,k JT,k
δVk

+ — [̄L+ δck δmT +m9T δcT
=

KT,k LT,k MT,k NT,k OT,k δm+
k  +


m+9k δck	 (25) δ

ṁ_9T
— m̈_9T

δcT 
	 

PT,k QT,k RT,k ST,k TT,k
  δ

ṁ+
9k — m̈+

9k
δck 

 δ2̄G_T

 	 

— ˙̄2G_T δcT UT,k VT,k WT,k XT,k YT,k

 
δ2̄G+

k  — ˙̄2G+
k  δck 	



and "	 #	 "	 # "	 #
δR̄T — V̄+T  δcT = AT,k+1 BT,k+1	 δRk+1 — Vk+1δck+1

.(26)δV̄+T  — [̄L+TδcT	CT,k+1 DT,k+1 	 δV¯_
k+1 — [̄L_k+1δck+1

Recall that V̄+T  = V̄_T  ,and therefore δV̄+T  = δV̄_T  . Then the second vector equation of Equation (25) is
subtracted from the second vector equation of Equation (26) to isolate δcT

([̄L_T — [̄L+
T )δcT = —CT,k(δR̄k — V̄+k δck ) — DT,k (δV̄+

k  — [̄L+
k  δck )

— HT,k (δmk + ṁ+
9k δck ) — JT,kδ2̄G+

k + CT,k+1 (δR̄k+1 — V̄_
k+1δck+1)	 (27)

+ DT,k+1 (δV̄_
k+1 — [̄L_k+1δck+1).

Since there is no velocity discontinuity at patch point k, δV̄+k  = δV̄_k  ;thus, from Equation (24),

δV̄+k  — [̄L+k  δck = (δV̄_k — [̄L_k δck) + ([̄L_k  — ¯[L+
k )	

(28)
= Ck,k_1 (δRk_1 — Vk± 1δck_1) + Dk,k_1 (δVk± 1 — [L+k_ 1δck_1) + ([Lk — [L+

k  )δck .

Substituting this expression back into Equation (27) yields

([̄L_T — [̄L+
T )δcT = —CT,k(δR̄k — V̄+k δck ) — DT,k[C

//
k,k_1 (δRk_1 — V± 1δck_1)

+ Dk,k_1 (δV± 1 — [Lk_ 1δck_1) + l[Lk — [̄L+k  )] — HT,k (δmk + ṁ+
9k

δck )
(29)

— JT,kδ2̄G+
k + CT,k+1 (δR̄k+1 — V¯_

k+1δck+1 )

+DT,k+1 (δV̄_
k+1 —[̄L_k+1δck+1).
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The term SV¯+k_1 — [̄L+
k_ 1Sck_1 may be written in terms of the control variables by rearranging the first

variational equation of Equation (24),

SV¯ +
k_1 — [̄L+

k_1Sck_1 = B_1
k,k_1 [(SR̄k — V̄_k Sck ) — Ak,k_1 (SR̄k_1 — V¯ +

k_1Sck )^.	 (30)

Thus, Equation (29) may also be written as

([̄L_T — [̄L+T )ScT = —CT,k(SR̄k — V̄+
k Sck ) — DT,k[Ck,k_1 (SR̄k_1 — V¯ +

k_1Sck_1)

+ Dk,k_1Bk,k_1 [(SRk — V̄_k Sck ) — Ak,k_1 (SR̄k_1 — V̄+
k_1Sck)^ + ([̄L_

k — [̄L+k )Sck ^
(31)

— HT,k (Smk + ṁ+
gk Sck ) — JT,k Sū+

k + CT,k+1 (SR̄k+1 — V¯ _
k+1Sck+1 )

+ DT,k+1 (SV̄_k+1 — ¯[L_
k+1Sck+1).

Grouping like terms and rearranging to combine the non-control variables into a single vector yields

([̄L_
T — [̄L

+
T )ScT = —(CT

/

,k +DT,kDk,k_1Bk,k_1)(SRk —/V+Sck )

— DT,k lCk,k_1 — Dk,k_1Bk,k_1Ak,k_1 ) ISRk_1 — V¯ +
k_1Sck_1)

— DT,k ([̄L_
k — [̄L+

k  )Sck — HT, k (Smk + ṁ+
gk

 Sck )	
(32)

+ CT,k+1 (SR̄k+1 — V̄_
k+1Sck+1) — DT,k+1[̄L_

k+1Sck+1

r	 1	 Sūk

+ L —JT,k DT,k+1 J	
.

SV¯ _
k+1

It has been shown, in the derivation of impulsive targeting algorithm, that (Ck,k_1 — Dk,k_1B_1
k,k_1Ak,k_1) =

Bk  11 k ; thus, Equation (32) can be somewhat reduced to

([̄L_T — [̄L+
T )ScT = —(CT,k 

+D//
T,kDk,k_1Bk,k_1 )(SRk —V+Sck )

— DT,kBk 11 k lSRk_1 — V¯ +
k_1Sck_1)

— DT,k ([̄L_
k — [̄L+k  )Sck — HT, k (Smk + ṁ+

gk
 Sck )	

(33)
+ CT, k+1(SR̄k+1 — V¯ _

k+1 Sck+1 ) — DT,k+1[̄L_
k+1 Sck+1

h
	 1	 Sū+

+ k—JT,k DT,k+1 	 .
SV¯ _

k+1

T
In order to express h Sū+

k  SVk+1 ] in terms of the control variables, the first vector equations from

Equation (25) and Equation (26) are used. Because V̄+
T  = V̄_

T  , it is also true that SR̄T — V̄+T  = SR̄T — SV̄_T  .
Thus,

AT,k (SR̄k — V̄+k Sck ) + BT,k (SV̄+k  — [̄L+k  Sck) + ET,k (Smk + ṁ+
gk Sck) + GT,kSū+

k 	 (34)

= AT,k+1 (SR̄k+1 — V̄_
k+1Sck+1) +BT,k+1 (SV̄_k+1 — ¯[L_

k+1Sck+1 ).

Using the relationship in Equation (30), the previous equation may be rewritten as

AT,k(SR̄k — V̄+
k Sck) +BT,k[Ck,k_1 (SR̄k_1 — V¯ +

k_1Sck_1)

+ Dk,k_1Bk,k_1 [(SRk — V̄_k Sck ) — Ak,k_1 (SR̄k_1 — V̄+
k_1Sck)^ + ([̄L_

k — [̄L
+
k  )Sck ^	

(35)
+ ET,k (Smk + ṁ+

gk
 Sck) + GT,kSū+

k

= AT,k+1 (SR̄k+1 — V̄_
k+1Sck+1) + BT,k+1 (SV̄_k+1 — ¯[L_

k+1Sck+1).

Rearranging this equation yields

(AT,k +BT,kDk,k_1Bk,k_1 )(SRk — V̄_k Sck) +BT,k(Ck,k_1

— Dk,k_1Bk k_1Ak,k_1 )(SRk_1 — V¯ +
k_1Sck )

+ BT,k ([̄L_
k — [̄L+k  )Sck + ET, k (Smk + ṁ+

gk
Sck )	

(36)
— AT,k+1 (SR̄k+1 — V̄_

k+1Sck+1) +BT,k+1 ¯[L_k+1Sck+1

r	 1	 Sūk

= L —GT,k BT,k+1 J	
.

SV̄_
k+1
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Again using the relationship (Ck,k-1 — Dk,k-1B-1
k,k-1Ak,k-1) = Bk 11 k , Equation (36) becomes

(AT,k + BT,kDk,k-1Bk,k-1 ) (δRk — V̄-k  δtk) + BT,kBk 11 k (δRk-1 — V¯ +
k-1δtk )

+ BT,k (ā-k — ā+
k  )δtk + ET,k (δ112k + ˙112+gk δtk )

— AT,k+1 (δR̄k+1 — V̄-
k+1δtk+1) + BT,k+1 ā-k+1δtk+1	 (37)

r	 1	 δūk

= L —GT,k BT,k+1 J	
.

δV¯-
k+1

Letting S = [ —GT,k BT,k+1 ] , the minimum norm solution to Equation (37) gives an expression for
T

[ δū+
k δVk+1 ] in terms of the control variables:

"	 #
δū+

k 	_ ST (SST) -1 [(AT,k + BT,kDk,k-1Bk,k-1 ) (δRk — V-
k  δtk )

δVk+1 —

+ BT,kBk 11 k (δRk-1 — V̄+k-1δtk) + BT,k (ā-k — ā+
k  )δtk	(38)

+ ET,k (δ112k + ˙112+gk δtk ) — AT,k+1 (δR̄k+1 — V¯ -k+1δtk+1 )

+ BT,k+1 ¯a-k+1δtk+1].

This can be substituted back into Equation (33) to obtain an expression for δtT in terms of the control

variables. Let S = [ —JT,k DT,k+1 ] ST (SST ) -1 ; Equation (33) can then be written as

(ā-T — ā
+
T )δtT = —(CT,k + DT,kDk,k-1B-1

k,k-1 ) (δR̄k — V¯ +
k δtk )

— DT,kBk 11 k (δRk-1 — V̄+k-1δtk-1 ) — DT,k (ā-k — ā+
k  )δtk

— HT,k (δ112k + ˙112+gk δtk) + CT,k+1 (δR̄k+1 — V¯ -k+1δtk+1 )

— DT,k+1 ā-k+1δtk+1	 (39)

+ S̃[(AT,k + B/T,kDk,k-1Bk,k-1 ) (δRk — 
/
V-k  δtk )

+ BT,kBk 11 k (δRk-1 — Vk± 1δtk ) + BT,k ( āk — ā
+
k )δtk

+ ET,k (δ112k + ˙112+gk δtk ) — AT,k+1 (δR̄k+1 — V¯-
k+1 δtk+1 )

+ BT,k+1 ¯a-k+1δtk+1].

It should be noted that the term δ112k is still present in this expression; this term is a function of the control
variables at previous maneuver patch points and will be dealt with at the end of this derivation. Combining
like terms reduces Equation (39) to

(¯a-T — ā
+
T )δtT = —(DT,kBk l1 k — SBT,kBk l1 ,k )(δ/Rk-1 — V± 1δtk )

— [(CT,k + DT,kDk,k-1Bk k-1) — S(AT,k + BT,kDk,k-1Bk ,k-1 )] (δRk — V̄-k  δtk )

— (DT , k — S̃BT,k) (ā
-
k  — ā+

k  )δtk — (HT , k — S̃ET,k) (δ112k + ˙112+gk δtk )	 (40)
+ (CT,k+1 — S̃AT,k+1)(δR̄k+1 —V¯ -k+1δtk+1 )

— (DT , k+1 — ˜SBT,k+1 )¯a-k+1δtk+1 .

Finally, let DāT = ā-T — ā+
T . This term can be written in terms of its magnitude and direction;

DāTDaT =I I DaT I I I I DāT

At point T, DāT is equal to the applied thrust. Thus, the unit vector °¯aT is equal to the unit thrustII° āTII
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ū+

direction ick = 
I Î  ||. 

Equation (40) can therefore be written as

Δ_aT IIûkδtT = —(DT kBk
1

1 k —SBT kBk l1,k )(δRk-1 — V_ +
k-1δtk )

— [(CT,k + DT,kDk,k-1Bk k-1) — 
˜S(AT,k + BT,kDk,k-1Bk,k-1 )](δRk — V_ -k  δtk )

— (DT, k — ˜SBT,k )(_a-k  — _a+

k  )δtk — (HT, k — ˜SET,k) (δmk + ṁ+
gk δtk)
	 (42)

+ (CT, k+1 — ˜SAT,k+1 ) (δ_Rk+1 — V_-
k+1 

δtk+1)

— (DT, k+1 — ˜SBT,k+1 )_a-k+1δtk+1 .

Dividing both sides of Equation (42) by IIΔ_aT I I,

ûkδtT = IIΔaT II-1 [—(DT,kBk 11 k — SBT,kBk l1,k)(δRk-1 — V_ +
k-1δtk )

— [(CT,k + DT,kDk ,k-1Bk,k-1 )
 — 

S̃(AT,k + BT,kDk,k-1Bk,k-1 )] (δRk — V_ -

k  δtk )

— (DT, k — ˜SBT,k )(_a-k — _a+

k  )δtk — (HT, k — ˜SET,k )(δmk + ṁ+

gk δtk )	 (43)

+ (CT, k+1 — ˜SAT,k+1 ) (δ_Rk+1 — V_ -
k+1 δtk+1)

— (DT,k+1 —S̃BT,k+1 )_a-k+1δtk+1].

Because ûk is a unit vector, both sides of Equation (43) can be pre-multiplied by ûT

k  to give

T	
_δtT = uk [—(DT , kBk l i k — SBT , kBk ll , k )(δRk_1 — V± l δtk )

IIΔaT I I
	_

	
_— [(CT,k + DT,kDk,k-1Bk k-1) — S(AT,k + BT,kDk,k-1Bk,k-1 )](δRk — Vk  δtk )

44
— (DT,k — SBT,k )(_ak  — _a+

k  )δtk — (HT,k — SET,k )(δmk + 1i2+
gk

δtk )	
( )

+ (CT, k+1 — ˜SAT,k+1 ) (δ_Rk+1 — V_ -
k+1 δtk+1)

— (DT, k+1 — ˜SBT,k+1 )_a-k+1δtk+1].

Using Equation (44) and recalling that Δtbur^,n = tT — tk, the partial derivatives of Δtbur^,n with respect to
the control variables are

T∂Δtbur^,n = — uk (DT,kBk 11 k — SBT kBk 11 k )7

	

∂Rk-1	 IIΔ_aT I
T∂Δtbur^,n = uk (DT kBk 11 k —SBT kBk 11 k)V ± 1 7

	

∂tk-1	 IIΔaT II
T∂ 

aRk^,

n

 
= — I I 

uk 

I I 
[(CT,k + DT,kDk,k-1Bk,k-1 ) — S(AT,k + BT,kDk,k-1Bk,k-1 )]7

Δ_aT
T	

_
	 ( )

	

∂Δtbur^,n 	 u
k ([(CT,k + DT,kDk,k- 1Bk k- 1 ) — S(AT,k + BT,kDk,k-1Bk,k-1 )] Vk	

45
∂tk =IIΔaT II 	̃

˜— (DT,k — SBT,k)(ak — a
+

k ) — (HT,k —SET,k)mg) — 17
T∂Δtbur^,n = uk (CT,k+1 —SAT k+1 )7

	

∂Rk+1	 IIΔ_aT I

	

T	
_∂Δtbur^,n = — uk [(CT,k+1 —SAT k+1)Vk+1 + (DT k+1 —SBT k+1 )_ak+1].

	

∂tk+1	 IIΔaT I

The term containing δmk can be expressed as a function of the change in the initial mass, δm0 , and the
burn durations of all maneuvers prior to patch point k,

,̂-1

δmk = δm0 — ^ ṁgΔtbur^,j 7	 (46)
j=1
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where j denotes the maneuver number and n is the maneuver number at patch point k. Because the initial
mass is fixed, this equation reduces to

,̂—1

δmk = − ^ ṁgΔtbur^,; .	 (47)
;=1

Since ṁg is a fixed, constant value, δmk is a function only of the previous burn durations. Thus, Δtbur^,n has
a dependence on the positions and times associated with any previous maneuvers that have occurred. Also,
ΔVk has a direct dependence on the mass at the beginning of the burn (and therefore on the previous burn
durations), so that must be taken into account as well. Using the chain rule, the final form of the partial
derivative of the constraint α (the sum of all the burn ΔVs) with respect to any control variable βk in the
set of control variables associated with patch point k is

aα	 aΔV̂ , aΔtbur^,n + 
N aΔV; aΔtbur^,n 	 (48)

aβk = aΔtbur^,n aβk	^ aΔtbur^,n aβk ,
;=,̂+1

where
aΔV; = aΔV;	 aΔV; aΔtbur^,;	

( )
aΔtbur^,n aΔtbur^,n + aΔtbur^,; aΔtbur^,n 

.49

These partial derivatives are then placed into the M matrix in accordance with the existing maneuver
constraint formulation.

IV. Simulation and Results

The two level targeting algorithm is applied in the following section in both the impulsive and finite burn
configurations. This is done in order to demonstrate its performance under both configurations and to gain
insight as to applications of each. Then, as a final metric, an optimal trajectory is generated to use for
performance comparisons.

For each case, the same initial conditions of the lunar orbit will be used as follows:

• Epoch: 4-Apr-2024 15:30:00 TDT

• Initial mass: 20339.9 kg (total fuel = 8063.65 kg)

• Main Engine Thrust: 33,361.6621 N

• Main Engine Isp: 326 sec

• Auxiliary Engine Thrust: 4,448.0 N

• Auxiliary Engine Isp: 309 sec

• State (J2000 Moon-centered inertial frame):

– X: -1236.7970783385588 km
– Y: 1268.1142350088496 km
– Z: 468.38317094160635 km
– Vx: 0.0329108058365355 km/sec
– Vy: 0.589269803607714 km/sec
– Vz -1.528058717568413 km/sec

Likewise, the same terminal target conditions will be used for each case as shown below:

• Geodetic Altitude (km) 121.92

• Longitude (deg) 175.6365

• Geocentric Azimuth (deg) 49.3291

• Geocentric Flight Path Angle (deg) -5.86
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A. Impulsive Algorithm Example

The first case is representative of a nominal Earth return during which the maneuvers are performed by the
CM main engine. For this case, the impulsive targeter is executed and the initial guess file consists of 12
”patch points” or states taken from an optimized trajectory. The first patch point corresponds to a state ad
epoch 20 minutes prior to the optimized TEI -1 TIG. The interior patch points correspond to the states and
epochs at each of maneuver locations (TEI-1, 2, 3 and TCM 1, 2, 3) and some additional waypoints along
the trajectory. The final patch point in the initial guess is the state and epoch at the desired entry interface
(EI).

For this case the impulsive targeter is executed in order to find a feasible trajectory that satisfies the
specified terminal constraints, while minimizing the ΔV sum of the individual maneuvers. The targeter
converges on a feasible solution after 15 iterations and 2.34 minutes of computation time (Figure 2). The
total ΔV of this solution is 1.3484 km^s. The ΔV for each maneuver is given in Table 1.

x 105
	Impulsive Trajectory

0.5

0	 X ^ ^	 _

X.
−0.5

'x.

Y −1

−1.5

−2 xx

−2.5
−0.5 	 0	 0.5	 1	 1.5	 2	 2.5	 3	 3.5

km	 x 105

Figure 2. Initial Guess and Impulsive Solution

Table 1. Maneuver Data

Maneuver ΔV (km^s)
TEI-1 0.6753
TEI-2 0.2617
TEI-3 0.4114

B. Finite Burn Algorithm Example

Assuming the use of the main engines for all three maneuvers, the finite burn algorithm is able to converge
on a final solution in 24 iterations, with a total ΔV of 1.3353 km^s. The maneuver sum constraint is active
for this case, with a maximum allowable ΔV of 1.40 km^s. The full solution is shown in Figure 3. Figures 4,
5, and 6 show closeup views of TEI-1, TEI-2, and TEI-3, respectively. The solid red sections in each of these
closeups indicate the thruster burn segments of each arc. The burn duration, propellant mass consumption,
and ΔV for each maneuver are given in Table 2. The total computation time required to achieve a solution
is 6.57 minutes.
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	Finite Burn Trajectory (Main Engines)
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X

−2 	
^%/ .
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Figure 3. Initial Guess and Finite Burn Solution with Main Engines, Full Trajectory
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Figure 4. Initial Guess and Finite Burn Solution with Main Engines, TEI-1 Closeup

Table 2. Burn Data Using Main Engines

Maneuver Duration (s) Prop. Mass Consumed (kg) ΔV (km/s)
TEI-1 377.6462 3939.530 0.6546
TEI-2 131.2084 1368.740 0.2650
TEI-3 184.1434 1920.947 0.4157
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Figure 5. Initial Guess and Finite Burn Solution with Main Engines, TEI-2 Closeup
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Figure 6. Initial Guess and Finite Burn Solution with Main Engines, TEI-3 Closeup
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C. Finite Burn Algorithm with Auxiliary Engines

For this case, the maneuver sum constraint is relaxed to a maximum ΔV of 1.50 km^s. Using only the
auxiliary engines, the algorithm converges in 18 iterations, with a total ΔV of 1.500 km^s. As in the previous
section, the solid red portions of the final trajectory closeups indicate the segments of the trajectory in which
the engines are thrusting. Figure 7 shows the impulsive initial guess and the final finite burn solution for the
full return trajectory. Figures 8 through 10 show the closeup views of TEI-1, TEI-2, and TEI-3. Burn data
for each maneuver is listed in Table 3. The solution is identified after 7.67 minutes of computation time.

x 105
	Finite Burn Trajectory (Auxiliary Engines)
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km	 x 105

Figure 7. Initial Guess and Finite Burn Solution with Auxiliary Engines, Full Trajectory

Table 3. Burn Data Using Auxiliary Engines

Maneuver Duration (s) Prop. Mass Consumed (kg) ΔV (km^s)
TEI-1 3220.3465 4725.536 0.8039
TEI-2 934.8663 1371.823 0.2796
TEI-3 1242.5484 1823.316 0.4165

D. Optimized Finite Burn Trajectory

As a final step in this analysis, the previous trajectory generated from the finite burn targeter with auxiliary
thrusters was optimized using Copernicus. Again, the same initial conditions and initial guess file were used
to initiate both runs. The results of this optimized run are available in Table 4. The total ΔV for the
optimal run is 1.2413 km^s. This is an improvement of approximately 0.25 km^s of ΔV over the finite burn
targeting solution.

Table 4. Optimal Burn Data Using Auxiliary Engines

Maneuver Duration (s) Prop. Mass Consumed (kg) ΔV (km^s)
TEI-1 3327.008 3501.37 0.6040
TEI-2 873.040 1504.85 0.2993
TEI-3 1312.285 1828.22 0.4059
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Figure 8. Initial Guess and Finite Burn Solution with Auxiliary Engines, TEI-1 Closeup
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Figure 9. Initial Guess and Finite Burn Solution with Auxiliary Engines, TEI-2 Closeup
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Figure 10. Initial Guess and Finite Burn Solution with Auxiliary Engines, TEI-3 Closeup

V. Conclusions

This paper presents atwo-level targeting algorithm for finite burn maneuvers. The algorithm is a modifi-
cation of the impulsive targeting scheme described in Reference 2. Formulations for the finite burn versions of
both the Level I and Level II process are discussed, and a total mission cost constraint, originally developed
for the impulsive algorithm, is modified and adapted to the finite burn problem. The algorithm is tested for
the trans-Earth injection phase of the Orion mission. Results are compared for three different cases: using
the impulsive algorithm, using the finite burn algorithm with main engines for all three maneuvers, and using
the finite burn algorithm with only the auxiliary engines for the final two maneuvers. Results show that
the finite burn algorithm is able to converge on a feasible solution even in the case of a main engine failure
following TEI-1. Due to the additional complexity of the finite burn equations, the algorithm requires more
computational time than the impulsive targeter, but it still shows significant improvement over an optimizer
in terms of the computation cost.
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